Acta Crystallographica Section E

## Structure Reports

Online
ISSN 1600-5368

# trans-Diaquabis( $2,2^{\prime}$-bipyridine- $\kappa^{2} N, N^{\prime}$ )ruthenium(II) bis(trifluoromethanesulfonate) 

Hershel Jude, ${ }^{\text {a* }}$ Peter S. White, ${ }^{\text {b }}$ Dana M. Dattelbaum ${ }^{\text {c }}$ and Reginaldo C. Rocha ${ }^{\text {a }}$

${ }^{\text {a Los }}$ Alamos National Laboratory, MPA-CINT, Mail Stop G755, Los Alamos, NM 87545, USA, ${ }^{\text {b }}$ University of North Carolina, Department of Chemistry, Chapel Hill, NC 27599-3290, USA, and ${ }^{\text {c Los Alamos National Laboratory, DE-9, Mail Stop P952, }}$ Los Alamos, NM 87545, USA
Correspondence e-mail: judeh3@lanl.gov
Received 21 July 2008; accepted 3 September 2008
Key indicators: single-crystal X-ray study; $T=100 \mathrm{~K}$; mean $\sigma(\mathrm{C}-\mathrm{C})=0.003 \AA$; $R$ factor $=0.025 ; \omega R$ factor $=0.062$; data-to-parameter ratio $=12.4$.

The title compound, trans- $\left[\mathrm{Ru}(\mathrm{bpy})_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right]\left(\mathrm{CF}_{3} \mathrm{SO}_{3}\right)_{2}($ bpy $=$ 2,2'-bipyridine, $\mathrm{C}_{10} \mathrm{H}_{8} \mathrm{~N}_{2}$ ), crystallized from the decomposition of an aged aqueous solution of a dimeric complex of cis$\mathrm{Ru}(\mathrm{bpy})_{2}$ in $0.1 M$ triflic acid. The $\mathrm{Ru}^{\mathrm{II}}$ ion is located on a crystallographic inversion center and exhibits a distorted octahedral coordination with equivalent ligands trans to each other. The $\mathrm{Ru}-\mathrm{O}$ distance is 2.1053 (16) $\AA$ and the $\mathrm{Ru}-\mathrm{N}$ distances are 2.0727 (17) and 2.0739 (17) A. The bpy ligands are bent, due to inter-ligand steric interactions between H atoms of opposite pyridyl units across the Ru center. The crystal structure exhibits an extensive hydrogen-bonding network involving the water ligands and the trifluoromethanesulfonate counter-ions within two-dimensional layers, although no close hydrogen-bond interactions exist between different layers.

## Related literature

For the crystal structures of related compounds, see: Weathers et al. (1997); Durham et al. (1980); Klüfers \& Zangl (2007). For a comparative discussion, see the Comment section in the Supplementary materials. For the preparation of the title compound, see: Jude et al. (2008); Sullivan et al. (1978). For related literature, see: Walsh \& Durham (1982).


## Experimental

## Crystal data

$\left[\mathrm{Ru}\left(\mathrm{C}_{10} \mathrm{H}_{8} \mathrm{~N}_{2}\right)_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right]\left(\mathrm{CF}_{3} \mathrm{SO}_{3}\right)_{2}$
$V=1382.71(13) \AA^{3}$
$M_{r}=747.61$
$Z=2$
Monoclinic, $P 2_{1} / c$
$\mathrm{Cu} K \alpha$ radiation
$a=8.6569$ (5) A
$\mu=6.88 \mathrm{~mm}^{-1}$
$b=14.1272$ (8) $\AA$
$T=100(2) \mathrm{K}$
$c=11.3226$ (6) $\AA$
$0.20 \times 0.15 \times 0.02 \mathrm{~mm}$
$\beta=93.095(3)^{\circ}$
Data collection
Bruker SMART APEXII CCD area-detector diffractometer
Absorption correction: numerical followed by $S A D A B S$ (Bruker, 2007)
$T_{\text {min }}=0.340, T_{\text {max }}=0.875$

## Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.025 \quad \mathrm{H}$ atoms treated by a mixture of
$w R\left(F^{2}\right)=0.061 \quad$ independent and constrained
$S=1.09$ refinement
2538 reflections
204 parameters

15574 measured reflections 2538 independent reflections 2436 reflections with $I>2 \sigma(I)$ $R_{\text {int }}=0.039$

Table 1
Hydrogen-bond geometry ( $\AA,{ }^{\circ}$ ).

| $D-\mathrm{H} \cdots A$ | $D-\mathrm{H}$ | $\mathrm{H} \cdots A$ | $D \cdots A$ | $D-\mathrm{H} \cdots A$ |
| :--- | :--- | :--- | :--- | :--- |
| O1-H1B $\cdots \mathrm{O} 19^{\mathrm{i}}$ | 0.73 (4) | 2.01 (4) | $2.727(2)$ | $169(4)$ |
| O1-H1A $\cdots \mathrm{O}^{\mathrm{ii}}$ | 0.75 (3) | $1.95(3)$ | $2.695(2)$ | $169(3)$ |

Symmetry codes: (i) $-x+1, y+\frac{1}{2},-z+\frac{1}{2}$; (ii) $-x+1,-y+1,-z+1$.
Data collection: APEX2 (Bruker, 2007); cell refinement: APEX2; data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

Support by the US Department of Energy through the Laboratory Directed Research and Development (LDRD) program at LANL is gratefully acknowledged.

[^0]
## metal-organic compounds

## References

Bruker (2007). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
Durham, B., Wilson, S. R., Hodgson, D. J. \& Meyer, T. J. (1980). J. Am. Chem. Soc. 102, 600-607.
Jude, H., Rein, F. N., White, P. S., Dattelbaum, D. M. \& Rocha, R. C. (2008). Inorg. Chem. 47, 7695-7702.

Klüfers, P. \& Zangl, A. (2007). Acta Cryst. E63, m3088.
Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
Sullivan, B. P., Salmon, D. J. \& Meyer, T. J. (1978). Inorg. Chem. 17, 3334-3341.
Walsh, J. L. \& Durham, B. (1982). Inorg. Chem. 21, 329-332.
Weathers, N. R., Sadoski, R. C., Durham, B. \& Cordes, A. W. (1997). Acta Cryst. C53, 1047-1049.

## supplementary materials

## trans-Diaquabis(2,2'-bipyridine- $\left.\kappa^{2} N, N^{\prime}\right)$ ruthenium(II) bis(trifluoromethanesulfonate)

H. Jude, P. S. White, D. M. Dattelbaum and R. C. Rocha

## Comment

The water ligands in cis- and trans- $\left[\mathrm{Ru}(\mathrm{bpy})_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right]^{2+}$ can undergo facile ligand substitution under mild reaction conditions and thus these complexes have been important synthetic precursors to derivatives of the general type $\left[\mathrm{Ru}(\mathrm{bpy})_{2}(X)(\mathrm{Y})\right]^{n}$. Although the trans isomer is usually obtained from the photo-induced isomerization of the more common cis isomer (Durham et al., 1980; Walsh \& Durham, 1982), formation of the trans isomer as a by-product in synthetic preparations involving the cis-Ru(bpy) ${ }_{2}$ moiety has also been reported (e.g. Weathers et al., 1997).

The title compound trans- $\left[\mathrm{Ru}(\mathrm{bpy})_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right]\left(\mathrm{CF}_{3} \mathrm{SO}_{3}\right)_{2}$, $(\mathbf{I})$, was unintentionally obtained and crystallized from an acidic $\left(0.1 ~ M \mathrm{CF}_{3} \mathrm{SO}_{3} \mathrm{H}\right)$ aqueous solution of $\left[(\mathrm{bpy})_{2} \mathrm{Ru}(\mathrm{OMe})(\mathrm{pyz}) \mathrm{Ru}(\mathrm{bpy})_{2}\right]\left(\mathrm{PF}_{6}\right)_{2}$ (Jude et al., 2008) that was left aging in ambient conditions for several weeks. Its crystal structure is shown in Figs. 1 and 2, and detailed structural information is available herein as supplementary materials as well as in the archived CIF.

The structure of the analogous compound as a hexafluorophosphate salt, i.e. trans- $\left[\mathrm{Ru}(\mathrm{bpy})_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right]\left(\mathrm{PF}_{6}\right)_{2}$, $(\mathbf{I I})$, was previosuly reported (Weathers et al., 1997). In this case, the compound crystallized in the triclinic ( $P \overline{1}$ ) space group. The $\mathrm{Ru}-\mathrm{O}$ distance of $2.116(2) \AA$ in the $\mathrm{PF}_{6}{ }^{-}$salt is similar to that reported here for the $\mathrm{CF}_{3} \mathrm{SO}_{3}{ }^{-}$analogue, and the mean $\mathrm{Ru}-\mathrm{N}$ distance of 2.074 (2) $\AA$ in II is essentially identical to those observed for $\mathbf{I}$. The dihedral angle between the pyridyl ( $\mathrm{C}_{5} \mathrm{~N}$ ) ring planes in the distorted, non-planar bpy ligands is also similar in these compounds: $162.68(12)^{\circ}$ for $\mathbf{I I}$ and $160.1(1)^{\circ}$ for $\mathbf{I}$.

Another related structure was reported earlier for the oxidized/deprotonated $\mathrm{Ru}(\mathrm{III})$-hydroxy species, trans$\left[\mathrm{Ru}(\mathrm{bpy})_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)(\mathrm{OH})\right]\left(\mathrm{ClO}_{4}\right)_{2}$ (Durham et al., 1980). This perchlorate salt, (III), crystallized in the trigonal space group $\left(P 3_{1} 21\right)$. In this case, however, the sterically strained bpy ligands adopted a twisted conformation, in contrast to the bowed conformation in both I and II. Shorter Ru—N distances are exhibited by the Ru(II)-diaqua species compared to III (2.090 (3) and 2.099 (3) $\AA$ ), owing to the characteristic $\pi$-backbonding involving $\mathrm{Ru}(\mathrm{II})$ and $\pi$-acceptor pyridyl ligands. Consistent with the higher $\mathrm{Ru}($ III ) oxidation state, however, the $\mathrm{Ru}-\mathrm{O}$ bond distance is shorter in III (2.007 (3) $\AA$ ).

The trans- $\left[\mathrm{Ru}(\mathrm{bpy})_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right]^{2+}$ cations pack in alternating layers with the $\mathrm{CF}_{3} \mathrm{SO}_{3}{ }^{-}$anions packed between the cations. An extensive hydrogen bonding network exists within two-dimensional layers as a result of the hydrogen bonds between the water ligand molecules in the cationic complex and the sulfonate groups in the trifluoromethanesulfonate anions (Table 1 and Figure 2). However, no significant hydrogen-bond interactions are present between different layers.

## Experimental

cis- $\mathrm{Ru}(\mathrm{bpy})_{2} \mathrm{Cl}_{2}$ was prepared as described by Sullivan et al. (1978). The title compound was a product of the decomposition of $\left[(\mathrm{bpy})_{2} \mathrm{Ru}(\mathrm{OMe})(\mathrm{pyz}) \mathrm{Ru}(\mathrm{bpy})_{2}\right]\left(\mathrm{PF}_{6}\right)_{2}$ (Jude et al., 2008) in a highly acidic $\left(0.1 \mathrm{MCF}_{3} \mathrm{SO}_{3} \mathrm{H}\right)$ aqueous solution that was

## supplementary materials

kept for several weeks in a sealed clear glass jar in ambient lighting and temperature conditions. Red-orange blocks suitable for single-crystal X-ray analysis were isolated from the mixture.

## Refinement

Diffraction data for single crystals of I were collected for $2 \theta<139.4^{\circ}$ on a Bruker AXS SMART APEXII diffractometer. The structure was solved by direct methods and hydrogen atoms were included in the final refinement cycles at predicted positions, with the exception of H 1 A and H 1 B which were refined isotropically.

## Figures



Fig. 1. Single crystal structure of the title compound with $50 \%$ probability displacement ellipsoids. H atoms are omitted for clarity.


Fig. 2. A packing diagram showing the hydrogen bonds (as dotted lines) between the water ligands in the ruthenium complex and the sulfonate group in the trifluoromethanesulfonate counterions.

## trans-Diaquabis(2,2'-bipyridine- $\mathbf{\kappa}^{2} \mathbf{N}^{\prime} \mathbf{N}^{\prime}$ )ruthenium(II) bis(trifluoromethanesulfonate)

## Crystal data

$\left[\mathrm{Ru}\left(\mathrm{C}_{10} \mathrm{H}_{8} \mathrm{~N}_{2}\right)_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right]\left(\mathrm{CF}_{3} \mathrm{O}_{3} \mathrm{~S}\right)_{2}$
$M_{r}=747.61$
Monoclinic, $P 2_{1} / c$
Hall symbol: -P 2ybc
$a=8.6569$ (5) $\AA$
$b=14.1272(8) \AA$
$c=11.3226(6) \AA$
$\beta=93.095(3)^{\circ}$
$V=1382.71(13) \AA^{3}$
$Z=2$

$$
\begin{aligned}
& F_{000}=748 \\
& D_{\mathrm{x}}=1.796 \mathrm{Mg} \mathrm{~m}^{-3} \\
& \mathrm{Cu} K \alpha \text { radiation } \\
& \lambda=1.54178 \AA \\
& \text { Cell parameters from } 1677 \text { reflections } \\
& \theta=5.0-67.3^{\circ} \\
& \mu=6.88 \mathrm{~mm}^{-1} \\
& T=100(2) \mathrm{K} \\
& \text { Plate, brown } \\
& 0.20 \times 0.15 \times 0.02 \mathrm{~mm}
\end{aligned}
$$

## Data collection

Bruker SMART APEXII CCD area-detector diffractometer
Radiation source: fine-focus sealed tube
Monochromator: graphite

2538 independent reflections
2436 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.039$
$T=100(2) \mathrm{K}$
$\varphi$ and $\omega$ scans
Absorption correction: numerical Numerical followed by SADABS (Bruker, 2007)
$T_{\min }=0.340, T_{\max }=0.875$
15574 measured reflections
$\theta_{\text {max }}=69.7^{\circ}$
$\theta_{\min }=5.0^{\circ}$
$h=-9 \rightarrow 10$
$k=-17 \rightarrow 17$
$l=-13 \rightarrow 13$

## Refinement

Refinement on $F^{2}$
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.025$
$w R\left(F^{2}\right)=0.062$
$S=1.09$
2538 reflections
204 parameters
Primary atom site location: structure-invariant direct methods

Secondary atom site location: difference Fourier map
Hydrogen site location: difference Fourier map
H atoms treated by a mixture of independent and constrained refinement

$$
w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.0273 P)^{2}+1.4103 P\right]
$$

where $P=\left(F_{\mathrm{o}}{ }^{2}+2{F_{\mathrm{c}}}^{2}\right) / 3$
$(\Delta / \sigma)_{\max }<0.001$
$\Delta \rho_{\text {max }}=0.69 \mathrm{e}^{-3}$
$\Delta \rho_{\min }=-0.45$ e $\AA^{-3}$
Extinction correction: none

## Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two 1.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving 1.s. planes.

Refinement. Refinement of $F^{2}$ against ALL reflections. The weighted $R$-factor $w R$ and goodness of fit $S$ are based on $F^{2}$, conventional $R$-factors $R$ are based on $F$, with $F$ set to zero for negative $F^{2}$. The threshold expression of $F^{2}>2 \sigma\left(F^{2}\right)$ is used only for calculating $R$ factors(gt) etc and is not relevant to the choice of reflections for refinement. $R$-factors based on $F^{2}$ are statistically about twice as large as those based on $F$, and $R$-factors based on ALL data will be even larger.

Hydrogen atoms were placed in calculated positions with the exception of H 1 A and H 1 A , which were located in a difference synthesis and subsequently allowed to refine with isotropic thermal parameters.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters ( $A^{2}$ )

|  | $x$ | $y$ | $z$ | $U_{\text {iso }} * / U_{\text {eq }}$ |
| :--- | :--- | :--- | :--- | :--- |
| Ru1 | 0.5000 | 0.5000 | 0.0000 | $0.01303(9)$ |
| O1 | $0.64907(19)$ | $0.61137(12)$ | $0.05421(17)$ | $0.0181(3)$ |
| N2 | $0.6089(2)$ | $0.42131(12)$ | $0.13474(15)$ | $0.0154(4)$ |
| C3 | $0.5507(3)$ | $0.39407(15)$ | $0.23786(19)$ | $0.0192(4)$ |
| H3 | 0.4431 | 0.4020 | 0.2475 | $0.023^{*}$ |
| C4 | $0.6412(3)$ | $0.35501(17)$ | $0.3302(2)$ | $0.0243(5)$ |
| H4 | 0.5965 | 0.3365 | 0.4014 | $0.029^{*}$ |
| C5 | $0.7986(3)$ | $0.34355(18)$ | $0.3164(2)$ | $0.0271(5)$ |
| H5 | 0.8644 | 0.3208 | 0.3800 | $0.033^{*}$ |


|  |  |  |  |  |
| :--- | :--- | :--- | :--- | :--- |
| C6 | $0.8584(3)$ | $0.36563(17)$ | $0.2090(2)$ | $0.0230(5)$ |
| H6 | 0.9650 | 0.3559 | 0.1970 | $0.028^{*}$ |
| C7 | $0.7606(3)$ | $0.40225(15)$ | $0.11871(19)$ | $0.0179(4)$ |
| C8 | $0.8048(2)$ | $0.41339(15)$ | $-0.00489(19)$ | $0.0170(4)$ |
| C9 | $0.9491(3)$ | $0.38753(16)$ | $-0.0439(2)$ | $0.0208(5)$ |
| H9 | 1.0312 | 0.3708 | 0.0113 | $0.025^{*}$ |
| C10 | $0.9709(3)$ | $0.38668(17)$ | $-0.1642(2)$ | $0.0240(5)$ |
| H10 | 1.0692 | 0.3716 | -0.1926 | $0.029^{*}$ |
| C11 | $0.8470(3)$ | $0.40816(17)$ | $-0.2426(2)$ | $0.0230(5)$ |
| H11 | 0.8578 | 0.4043 | -0.3255 | $0.028^{*}$ |
| C12 | $0.7075(3)$ | $0.43527(16)$ | $-0.19861(19)$ | $0.0194(4)$ |
| H12 | 0.6233 | 0.4499 | -0.2528 | $0.023^{*}$ |
| N13 | $0.6869(2)$ | $0.44164(12)$ | $-0.08110(16)$ | $0.0160(4)$ |
| S1 | $0.31188(6)$ | $0.31728(4)$ | $0.61491(5)$ | $0.01857(13)$ |
| C14 | $0.2290(3)$ | $0.3937(2)$ | $0.4986(2)$ | $0.0343(6)$ |
| F15 | $0.1904(2)$ | $0.34309(16)$ | $0.40134(15)$ | $0.0556(5)$ |
| F16 | $0.3298(2)$ | $0.45966(12)$ | $0.46821(15)$ | $0.0458(4)$ |
| F17 | $0.1035(2)$ | $0.43667(17)$ | $0.53333(18)$ | $0.0652(6)$ |
| O19 | $0.44116(19)$ | $0.27407(11)$ | $0.55926(14)$ | $0.0241(4)$ |
| O20 | $0.3551(2)$ | $0.38361(12)$ | $0.70808(14)$ | $0.0271(4)$ |
| O21 | $0.1893(2)$ | $0.25354(14)$ | $0.64049(17)$ | $0.0360(5)$ |
| H1A | $0.644(3)$ | $0.6198(19)$ | $0.120(3)$ | $0.016(7)^{*}$ |
| H1B | $0.619(4)$ | $0.651(2)$ | $0.018(3)$ | $0.033(9)^{*}$ |

Atomic displacement parameters $\left(A^{2}\right)$

|  | $U^{11}$ | $U^{22}$ | $U^{33}$ | $U^{12}$ | $U^{13}$ | $U^{23}$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Ru1 | $0.01032(13)$ | $0.01596(13)$ | $0.01305(13)$ | $0.00058(8)$ | $0.00289(8)$ | $-0.00017(7)$ |
| O1 | $0.0178(8)$ | $0.0206(8)$ | $0.0159(9)$ | $-0.0017(6)$ | $0.0017(6)$ | $0.0007(7)$ |
| N2 | $0.0146(9)$ | $0.0163(8)$ | $0.0155(9)$ | $0.0011(7)$ | $0.0015(7)$ | $-0.0003(7)$ |
| C3 | $0.0195(11)$ | $0.0191(10)$ | $0.0196(11)$ | $0.0000(8)$ | $0.0064(9)$ | $-0.0007(8)$ |
| C4 | $0.0310(13)$ | $0.0241(11)$ | $0.0185(11)$ | $0.0024(9)$ | $0.0070(10)$ | $0.0042(9)$ |
| C5 | $0.0291(14)$ | $0.0300(12)$ | $0.0219(11)$ | $0.0101(10)$ | $-0.0011(10)$ | $0.0028(9)$ |
| C6 | $0.0164(11)$ | $0.0288(12)$ | $0.0240(11)$ | $0.0054(9)$ | $0.0022(9)$ | $0.0008(9)$ |
| C7 | $0.0174(11)$ | $0.0169(10)$ | $0.0196(11)$ | $0.0008(8)$ | $0.0041(9)$ | $-0.0011(8)$ |
| C8 | $0.0149(11)$ | $0.0164(10)$ | $0.0198(11)$ | $-0.0002(8)$ | $0.0016(9)$ | $-0.0010(8)$ |
| C9 | $0.0163(11)$ | $0.0228(11)$ | $0.0232(11)$ | $0.0020(9)$ | $0.0018(9)$ | $-0.0001(9)$ |
| C10 | $0.0180(12)$ | $0.0285(12)$ | $0.0265(12)$ | $0.0039(9)$ | $0.0102(10)$ | $0.0003(9)$ |
| C11 | $0.0228(12)$ | $0.0281(12)$ | $0.0188(11)$ | $0.0033(9)$ | $0.0063(9)$ | $-0.0001(9)$ |
| C12 | $0.0192(12)$ | $0.0227(11)$ | $0.0167(10)$ | $0.0016(9)$ | $0.0027(9)$ | $-0.0003(8)$ |
| N13 | $0.0137(9)$ | $0.0160(8)$ | $0.0185(9)$ | $-0.0004(7)$ | $0.0037(7)$ | $-0.0005(7)$ |
| S1 | $0.0180(3)$ | $0.0219(3)$ | $0.0161(2)$ | $-0.0016(2)$ | $0.0032(2)$ | $-0.00187(19)$ |
| C14 | $0.0296(15)$ | $0.0488(17)$ | $0.0245(13)$ | $0.0170(12)$ | $-0.0003(11)$ | $0.0023(11)$ |
| F15 | $0.0536(12)$ | $0.0841(14)$ | $0.0270(9)$ | $0.0107(10)$ | $-0.0172(8)$ | $-0.0078(9)$ |
| F16 | $0.0665(12)$ | $0.0385(9)$ | $0.0332(9)$ | $0.0124(8)$ | $0.0110(8)$ | $0.0147(7)$ |
| F17 | $0.0458(11)$ | $0.0919(16)$ | $0.0583(12)$ | $0.0474(11)$ | $0.0068(9)$ | $0.0086(11)$ |
| O19 | $0.0218(9)$ | $0.0244(8)$ | $0.0266(8)$ | $0.0029(6)$ | $0.0054(7)$ | $0.0001(6)$ |
| O20 | $0.0347(10)$ | $0.0275(9)$ | $0.0191(8)$ | $-0.0044(7)$ | $0.0015(7)$ | $-0.0040(7)$ |

## sup-4

O 21
Geometric parameters ( $A,{ }^{\circ}$ )

| $\mathrm{Ru} 1-\mathrm{N} 2{ }^{\text {i }}$ | 2.0727 (17) | C7-C8 | 1.479 (3) |
| :---: | :---: | :---: | :---: |
| Ru1-N2 | 2.0727 (17) | C8-N13 | 1.360 (3) |
| Ru1-N13 ${ }^{\text {i }}$ | 2.0739 (17) | C8-C9 | 1.396 (3) |
| Ru1-N13 | 2.0739 (17) | C9-C10 | 1.385 (3) |
| Ru1-O1 ${ }^{\text {i }}$ | 2.1053 (16) | C9-H9 | 0.9500 |
| Ru1-O1 | 2.1053 (16) | C10-C11 | 1.389 (4) |
| O1-H1A | 0.75 (3) | C10-H10 | 0.9500 |
| O1-H1B | 0.73 (4) | C11-C12 | 1.384 (3) |
| N2-C3 | 1.352 (3) | C11-H11 | 0.9500 |
| N2-C7 | 1.363 (3) | C12-N13 | 1.355 (3) |
| C3-C4 | 1.387 (3) | C12-H12 | 0.9500 |
| C3-H3 | 0.9500 | S1-O21 | 1.4334 (18) |
| C4-C5 | 1.389 (4) | S1-O20 | 1.4451 (17) |
| C4-H4 | 0.9500 | S1-O19 | 1.4486 (16) |
| C5-C6 | 1.383 (3) | S1-C14 | 1.820 (3) |
| C5-H5 | 0.9500 | C14-F17 | 1.323 (3) |
| C6-C7 | 1.391 (3) | C14-F16 | 1.334 (3) |
| C6-H6 | 0.9500 | C14-F15 | 1.340 (3) |
| $\mathrm{N} 2{ }^{\text {i }}$-Ru1- N 2 | 180.00 (8) | N2-C7-C6 | 121.9 (2) |
| $\mathrm{N} 2{ }^{\text {i }}$-Ru1-N13 ${ }^{\text {i }}$ | 77.18 (7) | N2-C7-C8 | 113.93 (19) |
| N2-Rul-N13 ${ }^{\text {i }}$ | 102.82 (7) | C6-C7-C8 | 123.8 (2) |
| $\mathrm{N} 2^{\mathrm{i}}$-Ru1-N13 | 102.82 (7) | N13-C8-C9 | 122.0 (2) |
| N2-Ru1-N13 | 77.18 (7) | N13-C8-C7 | 114.07 (18) |
| N13 ${ }^{\text {i }}$-Ru1-N13 | 180.0 | C9-C8-C7 | 123.6 (2) |
| $\mathrm{N} 2{ }^{\text {i }}-\mathrm{Ru} 1-\mathrm{O} 1^{\text {i }}$ | 86.51 (7) | C10-C9-C8 | 119.0 (2) |
| $\mathrm{N} 2-\mathrm{Ru} 1-\mathrm{O} 1^{\text {i }}$ | 93.49 (7) | C10-C9-H9 | 120.5 |
| $\mathrm{N} 13{ }^{\mathrm{i}}-\mathrm{Ru} 1-\mathrm{O} 1^{\text {i }}$ | 86.88 (7) | C8-C9-H9 | 120.5 |
| N13-Ru1-O1 ${ }^{\text {i }}$ | 93.12 (7) | C9-C10-C11 | 119.0 (2) |
| $\mathrm{N} 2{ }^{\text {i }}$-Ru1-O1 | 93.49 (7) | C9-C10-H10 | 120.5 |
| N2-Ru1-O1 | 86.51 (7) | C11-C10-H10 | 120.5 |
| N13 ${ }^{\text {i }}$-Ru1-O1 | 93.12 (7) | C12-C11-C10 | 119.3 (2) |
| N13-Ru1-O1 | 86.88 (7) | C12-C11-H11 | 120.4 |
| O1 ${ }^{\text {i }}$-Ru1-O1 | 180.0 | C10-C11-H11 | 120.4 |
| Ru1-O1-H1A | 110 (2) | N13-C12-C11 | 122.4 (2) |
| Ru1-O1-H1B | 102 (3) | N13-C12-H12 | 118.8 |
| $\mathrm{H} 1 \mathrm{~A}-\mathrm{O} 1-\mathrm{H} 1 \mathrm{~B}$ | 113 (3) | C11-C12-H12 | 118.8 |
| C3-N2-C7 | 117.74 (19) | C12-N13-C8 | 117.98 (18) |
| C3-N2-Ru1 | 127.77 (15) | C12-N13-Ru1 | 127.48 (15) |
| C7-N2-Ru1 | 114.28 (14) | C8-N13-Ru1 | 114.35 (14) |
| N2-C3-C4 | 122.9 (2) | O21-S1-O20 | 115.16 (10) |
| N2-C3-H3 | 118.6 | O21-S1-O19 | 114.90 (11) |
| C4-C3-H3 | 118.6 | O20-S1-O19 | 114.53 (10) |


| C3-C4-C5 | 118.6 (2) |
| :---: | :---: |
| C3-C4-H4 | 120.7 |
| C5-C4-H4 | 120.7 |
| C6-C5-C4 | 119.2 (2) |
| C6-C5-H5 | 120.4 |
| C4-C5-H5 | 120.4 |
| C5-C6-C7 | 119.2 (2) |
| C5-C6-H6 | 120.4 |
| C7-C6-H6 | 120.4 |
| N13 ${ }^{\text {i }}$-Ru1-N2-C3 | 16.01 (19) |
| N13-Ru1-N2-C3 | -163.99 (19) |
| $\mathrm{O} 1^{\mathrm{i}}-\mathrm{Ru} 1-\mathrm{N} 2-\mathrm{C} 3$ | -71.58 (18) |
| $\mathrm{O} 1-\mathrm{Ru} 1-\mathrm{N} 2-\mathrm{C} 3$ | 108.42 (18) |
| N13 ${ }^{\text {i }}$-Ru1-N2-C7 | -158.51 (14) |
| N13-Ru1-N2-C7 | 21.49 (14) |
| $\mathrm{O} 1{ }^{\text {i }}$-Ru1- 2 - -C 7 | 113.90 (15) |
| O1-Ru1-N2-C7 | -66.10 (15) |
| C7-N2-C3-C4 | 5.3 (3) |
| Ru1-N2-C3-C4 | -169.07 (17) |
| N2-C3-C4-C5 | 0.2 (4) |
| C3-C4-C5-C6 | -4.1 (4) |
| C4-C5-C6-C7 | 2.5 (4) |
| C3-N2-C7-C6 | -7.0 (3) |
| Ru1-N2-C7-C6 | 168.14 (17) |
| C3-N2-C7-C8 | 166.29 (18) |
| Ru1-N2-C7-C8 | -18.6 (2) |
| C5-C6-C7-N2 | 3.2 (3) |
| C5-C6-C7-C8 | -169.4 (2) |
| N2-C7-C8-N13 | 0.6 (3) |
| C6-C7-C8-N13 | 173.7 (2) |
| N2-C7-C8-C9 | -172.6 (2) |
| C6-C7-C8-C9 | 0.5 (3) |
| N13-C8-C9-C10 | -2.8(3) |
| C7-C8-C9-C10 | 169.9 (2) |
| C8-C9-C10-C11 | -2.4 (3) |


| O21-S1-C14 | 104.58 (13) |
| :---: | :---: |
| O20-S1-C14 | 102.69 (12) |
| O19-S1-C14 | 102.65 (11) |
| F17-C14-F16 | 108.4 (2) |
| F17-C14-F15 | 108.5 (2) |
| F16-C14-F15 | 107.4 (2) |
| F17-C14-S1 | 110.79 (19) |
| F16-C14-S1 | 111.30 (19) |
| F15-C14-S1 | 110.4 (2) |
| C9-C10-C11-C12 | 3.8 (4) |
| C10-C11-C12-N13 | -0.1 (4) |
| C11-C12-N13-C8 | -5.0 (3) |
| C11-C12-N13-Ru1 | 169.81 (17) |
| C9-C8-N13-C12 | 6.5 (3) |
| C7-C8-N13-C12 | -166.89 (19) |
| C9-C8-N13-Ru1 | -169.01 (16) |
| C7-C8-N13-Ru1 | 17.6 (2) |
| $\mathrm{N} 2{ }^{\text {i }}$-Ru1-N13-C12 | -16.10 (19) |
| $\mathrm{N} 2-\mathrm{Ru} 1-\mathrm{N} 13-\mathrm{C} 12$ | 163.90 (19) |
| $\mathrm{O} 1{ }^{\text {i }}$-Ru1-N13-C12 | 71.02 (18) |
| O1-Ru1-N13-C12 | -108.98 (18) |
| $\mathrm{N} 2{ }^{\text {i }}$-Ru1-N13-C8 | 158.85 (14) |
| N2-Ru1-N13-C8 | -21.15 (14) |
| O1 ${ }^{\text {i }}-\mathrm{Ru} 1-\mathrm{N} 13-\mathrm{C} 8$ | -114.03 (15) |
| O1-Ru1-N13-C8 | 65.97 (15) |
| O21-S1-C14-F17 | 57.2 (2) |
| O20-S1-C14-F17 | -63.4 (2) |
| O19-S1-C14-F17 | 177.4 (2) |
| O21-S1-C14-F16 | 177.87 (17) |
| O20-S1-C14-F16 | 57.3 (2) |
| O19-S1-C14-F16 | -61.9 (2) |
| O21-S1-C14-F15 | -63.0 (2) |
| O20-S1-C14-F15 | 176.41 (18) |
| O19-S1-C14-F15 | 57.3 (2) |

Symmetry codes: (i) $-x+1,-y+1,-z$.

Hydrogen-bond geometry ( $A,{ }^{\circ}$ )

| $D — \mathrm{H} \cdots A$ | $D-\mathrm{H}$ | $\mathrm{H} \cdots A$ | $D \cdots A$ | $D-\mathrm{H} \cdots A$ |
| :--- | :--- | :--- | :--- | :--- |
| $\mathrm{O}-\mathrm{H} 1 \mathrm{~B} \cdots \mathrm{O} 19^{\mathrm{ii}}$ | $0.73(4)$ | $2.01(4)$ | $2.727(2)$ | $169(4)$ |
| $\mathrm{O} 1 — \mathrm{H} 1 \mathrm{~A} \cdots \mathrm{O} 20^{\mathrm{iii}}$ | $0.75(3)$ | $1.95(3)$ | $2.695(2)$ | $169(3)$ |

Symmetry codes: (ii) $-x+1, y+1 / 2,-z+1 / 2$; (iii) $-x+1,-y+1,-z+1$.

Fig. 1


## supplementary materials

Fig. 2



[^0]:    Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: PK2108).

